Oxitocina y conducta


A mayor cantidad de oxitocina endógena, mejor interacción social. La oxitocina se produce por neuronas desde el núcleo del tracto solitario, y por neuronas desde el núcleo cerebral de la amígdala medial.

Ilustración amablemente cedida para uso libre, por http://asociacioneducar.com/ Hipervínculo en http://asociacioneducar.com/ilustracion-nucleos-amigdala

Esta es la oxitocina.

Crédito de imagen:  https://melotraduces.wordpress.com/2013/07/05/la-hormona-de-la-felicidad-la-oxitocina-en-el-tratamiento-del-autismo/

Cuando la oxitocina se administra en forma de aerosol nasal, para acceder al cerebro, puede dar como resultado aumento de las sensaciones subjetivas de confianza, generosidad, reconocimiento emocional y la empatía social. También se la ha relacionado con una sensación de calma y bienestar. Dados todos estos beneficios, la oxitocina en aerosol puede encontrarse en docenas de sitios en internet como la «poción del amor» para mejorar la vida propia vida sentimental, aunque estas afirmaciones son dudosas en el mejor de los casos.

Referencias: http://www.psychologytoday.com/blog/spectrum-theory/201306/the-trust-hormone-how-oxytocin-can-help-treat-autism

Adicionalmente, un interesante blog sobre los efectos de la oxitocina en el comportamiento.

Otros blog y tema de salutogénesis sobre oxitocina.



The neuroscience of mindfulness


The nervous system has enough complexity underlying in the vasteness of neural and connecting settings. Stressful responses originally exists evolutionarily being part of the general adaptation syndrome, named by Hans Selye. But the lifestyle is originating an enormous burst of stress to each individual. There are some interventions known from ancient times, including several types of meditation, which were re-discovered by scholar researchers during the last decades of the last century, which were re-inforced in its impact on the nervous system, by many of the techniques intensely researched during the previous decade of the brain.  The mindfulness is a well-proven intervention demonstrating evidence in controlling functional states of several structures of nervous system, namely prefrontal cortex, hippocampal structures, cyngulate cortex, thalamus, and the resulting attention not only controls the stressful response, but improves cognition and cognitive abilities. And the amigdala, the nucleus in the forebrain linked to fear and stressful responses, diminish in size, and in function, improving conditions such as chronic pain, pos-traumatic stress disorders, to mention some.  The value of mindfulness as described by the investigator Jon Kavatt Zin is of big value when taking in consideration the new definition of health, namely the abilities to face and to adapt to stressful situations in a physical, social or mental challenges.

Brief introduction to the brain.

Credit of the image: http://people.esam.northwestern.edu/~kath/gating.html

The human brain is the most complex object in universe, is a reddish grey mass, with the consistency of firm jelly, which weighs on average 1200 grams and contains nearly 100 billion cells called neurones. Each neurone has a cell body which houses its processor, the nucleus and a lot of batteries providing energy, the mithochondria. Branching from the bodies are numerous processes or extension called collectively neurites, classified as dendrites or axons. Dendrytes branch and re-branch, are tree like structures that intertwingle with another dendritic trees of other neurones, while axon allows the transmission of electrical impulses to target tissues or another neurons. Each neurone makes up to 1000 different connections with its neighbours and different areas of the brain. This extensive connectivity allows electrical signals, and thus information to travel from one brain processing centre to another in a matter of milliseconds.

The human brain is organised in a hierarchical manner: the oldest core parts controlling the more primitive, instinctual behavioural reflexes; the newest parts enveloping the new ones, are controlling the more sophisticated cognitive, sensory and motor functions. The human brain is made up of three main blocks: the forebrain, the midbrain and the hindbrain.
The brain is made of three main parts: the forebrain, midbrain, and hindbrain. The forebrain consists of the cerebrum, thalamus, and hypothalamus (part of the limbic system). The midbrain consists of the tectum and tegmentum. The hindbrain is made of the cerebellum, pons and medulla. Often the midbrain, pons, and medulla are referred to together as the brainstem, which is the oldest part, evolved more than 500 million years ago. It closely resembles the brain of a modern reptile. It is responsible for automatic physiological reflexes that control in example breathing, heart rate and digestion, and coordinate movement and sense perception.
The midbrain contains neurones responsible for temperature control and the fine tuning of movement. It relays sensory information from the bodies sensory organs to the forebrain, while the hindbrain is made of the cerebellum, pons and medulla.
The most evolved part is the forebrain which is composed of cerebral hemispheres, and is what we most commonly think of as the brain, and the hypothalamus and thalamus.  It also plays an important part of the limbic system, a group of brain structures associated with the expression of emotion. In the last 100,000 years, the weight of the human brain has almost tripled, and most of this growth has been mainly by the cerebral hemispheres. The neurones of the forebrain control cognitive, sensory and motor function, as well as regulating reproductive functions, eating, sleeping and the display of emotion. (http://serendip.brynmawr.edu/bb/kinser/Structure1.html)

Neuroscience behind emotions

Emotions are triggered in the brain by thoughts, which are often unconscious. When we are confronted by a potential threat, this can trigger the best known feelings of fear, anger or the urge to flee (sometimes called “amygdala hyjack“).   The reaction is often disproportionate to the actual provocation.

Stres vs medit
Credit of the image: http://isites.harvard.edu/fs/docs/icb.topic893616.files/Neuroscience_Meditation.pdf

Stress is thought to be an important factor in many health problems. Early stress researchers found that regardless of the environmental stressor, a generalized physiological response was activated in the organism called the “fight or flight,” or stress response and termed the General Adaptation Syndrome by Hans Selye. When an individual encounters a stressor, the body part that first notes the stimulus passes the signal to the brain.   
The physical problems related to chronic stress include the lowering of the immune response, chronic muscle tension, and increased blood pressure. These problems can eventually lead to serious life-threatening illnesses such as heart attacks, kidney disease, and cancer (http://www.indiana.edu/~engs/hints/stress1.htm)
Makes absolute sense in the lifestyle we live in, the mastering of these stressful emotions, so then the enhancement of the own´s abilities for higher “rational brain” thinking favours the person, being likely to avoid the automatically behaviour stored in the basal ganglia.

Taken form http://www.drjack.co.uk/tag/emotion/

MRI scans show that after an eight-week course of mindfulness practice, the brain’s “fight or flight” center, the amygdala, appears to shrink. This primal region of the brain, associated with fear and emotion, is involved in the initiation of the body’s response to stress.
As the amygdala shrinks, the pre-frontal cortex – associated with higher order brain functions such as awareness, concentration and decision-making – becomes thicker.
The practice of mindfulness helps us to recognise and observe our thought patterns. Practitioners develop the ability to recognise when thoughts arise, and observe them in a detached manner, without the need to become involved in them, in the way described by professor Jon Kavatt-Zim Ph.D. (thus not triggering an emotional or “automatic” reaction).

The basic and classic conflict  between reason and emotion is between the amygdala, or the emotional and fearful part of the brain, and the frontal cortex, which can calm the amygdala and sort things out rationally.  Curiously, there is a limit to what the rational brain can handle, and the neuroanatomy can explain why. Projections from the amygdala to the brainstem, via the hypothalamus, regulate the expression of autonomic reactions to social signals, affecting the prefrontal cortex (PFC). In the same way, the control of the amygdala (AMY) arises from the anterior cingulate cortex (ACG) and affects the ventral medial prefrontal cortex (vmPFC) (http://mindblog.dericbownds.net/2010/10/serotonin-regulates-our-moral.html)

Right Brain and Left Brain?

The theory of right brain vs. left brain dominance originates with Nobel Prize winning neurobiologist and neuropsychologist Roger Sperry. Sperry discovered that the left hemisphere of the brain usually functions by processing information in rational, logical, sequential, and overall analytical ways. The right hemisphere tends to recognize relationships, integrate and synthesize information, and arrive at intuitive thoughts. By working together as a team, sharing logical and creative  information, the two hemispheres can generate a more complete description. A study conducted at the University of Utah has debunked the myth. Neuroscientists analyzed over 1,000 brain scans from people between the ages of seven and 29. The brain scans did not show any evidence that people use one side of the brain more than the other. Essentially, the brain is interconnected, and the two hemispheres support each other in its processes and functions (http://www.diffen.com/difference/Left_Brain_vs_Right_Brain)


Kavat- Zimm describes mindfulness as “the awareness that emerges through paying attention on purpose, in the present moment, and non-judgmentally to the unfolding of experience moment by moment”. This general understanding is echoed by other authors who explain mindfulness as being “characterized by dispassionate, non-evaluative, and sustained moment-to-moment awareness of perceptible mental states and processes. This includes continuous, immediate awareness of physical sensations, perceptions, affective states, thoughts, and imagery” (Front Neurosci. 2013;7:8).
Mindfulness interventions do begin with concentrative attention practices, such as attending to parts of the body or one’s breath, initially seeking to strengthen attentional control. Practice however then transitions to more ‘open monitoring’ practices of widespread attention to all sensations, thoughts and emotions (Can J Psychiatry. 2012 Feb; 57(2): 70–77.)
When practicing mindfulness the activation of the amygdala confers emotional significance to the lack of sensory information. Through these actions on the hypothalamus, the amygdala modifies the activity of the autonomic nervous system. First a blissful, peaceful state arises from the maximal activation of the parasympathetic (relaxation) nervous system, and then, as the different neural, hormonal and other triggers swing in, there is a maximal activation of the sympathetic (arousal) nervous system, producing a mentally clear and alert state. Physiological effects, such as changes to breathing rate, heart rate or blood pressure are the result of the amygdala’s effect on midbrain structures that control these functions.  Both of the left and right orientation and verbal-conceptual association areas are virtually switched off. A lack of activity in the right orientation association area gives rise to a sense of unity and wholeness, where as lack of activity in the left orientation association area results in the dissolving of the self/non-self boundary (http://www.mindfulnet.org/page25.htm). In emotion regulation, mindfulness provides prefrontal training that seems to promote the stable recruitment of a non-conceptual sensory pathway, an alternative to conventional cognitive reappraisal strategies. The attentional resources are directed towards a limbic pathway for present-moment sensory awareness, involving the thalamus, insula (Can J Psychiatry. 2012 Feb; 57(2): 70–77.)

What happens in the brain during meditation?

In experiments of Mindfulness Based Stress Reduction – MBSR subjects showed (1) increased functional connectivity within auditory and visual networks, (2) increased functional connectivity between auditory cortex and areas associated with attentional and self-referential processes, (3) stronger anticorrelation between auditory and visual cortex, and (4) stronger anticorrelation between visual cortex and areas associated with attentional and self-referential processes. These findings depicts that 8 weeks of mindfulness meditation training can alter intrinsic functional connectivity in ways that may reflect a more consistent attentional focus, enhanced sensory processing, and reflective awareness of sensory experience (Neuroimage. 2011 May 1;56(1):290-8)
Meditation includes a variety of practices aimed at focusing attention and awareness. Two general forms of meditation exist, namely “focused attention” and “open monitoring“. Initially a practitioner will often utilize focused attention practice to enhance attentional skills. The “open monitoring” practices focus widespread attention to all sensations, thoughts and emotions. Then, it will be possible to engage in open monitoring, which involves moment-by-moment awareness of whatever occurs in one’s awareness (Front Neurosci. 2013;7:8).
Another experiments in expert Theravada Buddhist monks and lay novices with 10 days of meditation practice on the above modalities, suggests that expert meditators control cognitive engagement in conscious processing of sensory-related, thought and emotion contents, by massive self-regulation of fronto-parietal and insular areas in the left hemisphere, in a meditation state-dependent fashion. So then, a functional reorganization of brain activity patterns for meditation type takes place with mental practice, and that meditation-related neuroplasticity is crucially associated to a functional reorganization of activity patterns in prefrontal cortex and in the insula (Brain Res Bull. 2010 Apr 29;82(1-2):46-56.)

Cognition Improved By Mindfulness Meditation

Credit of the image: https://universe-review.ca/R10-16-ANS07.htm

In another experiments in the framework of meditation, it was explored the hippocampal features analyzing high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 matched controls. It was found that left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The implications of larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation (Hum Brain Mapp. 2013 Dec;34(12):3369-75.)


To know more about interventions improving functioning and mental conditions will be of utility when dealing stressful conditions and maybe to avoid risk factors to develop neurodegenerative conditions. Mindfulness shows evidence when executed during eight weeks and the more the practice, the better the benefits.

More about mindfulness




Alejandro Melo-Florián MD – FACP

Author from Cerebro mente y conciencia – Un enfoque multidisciplinario


  1. Kilpatrick LA, Suyenobu BY, Smith SR, Bueller JA, Goodman T, Creswell JD, Tillisch K, Mayer EA, Naliboff BD. Impact of Mindfulness-Based Stress Reduction training on intrinsic brain connectivity. Neuroimage. 2011 May 1;56(1):290-8.
  2. Manna A, Raffone A, Perrucci MG, Nardo D, Ferretti A, Tartaro A, Londei A, Del Gratta C, Belardinelli MO, Romani GL. Neural correlates of focused attention and  cognitive monitoring in meditation. Brain Res Bull. 2010 Apr 29;82(1-2):46-56.
  3. Marchand WR. Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies. World J Radiol. 2014 Jul 28;6(7):471-9.
  4. Malinowski P. Neural mechanisms of attentional control in mindfulness meditation. Front Neurosci. 2013;7:8.
  5. Luders E, Thompson PM, Kurth F, Hong JY, Phillips OR, Wang Y, Gutman BA, Chou YY, Narr KL, Toga AW. Global and regional alterations of hippocampal anatomy in long-term meditation practitioners. Hum Brain Mapp. 2013 Dec;34(12):3369-75.
  6. Farb NAS, Anderson AK, Segal ZV. The Mindful Brain and Emotion Regulation in Mood Disorders. Canadian Journal of Psychiatry Revue Canadienne De Psychiatrie. 2012;57(2):70-77.
  7. https://universe-review.ca/R10-16-ANS07.htm
  8. http://isites.harvard.edu/fs/docs/icb.topic893616.files/Neuroscience_Meditation.pdf
  9. http://www.mindfulnet.org/page25.htm
  10. https://vimeo.com/29272470
  11. http://people.eku.edu/ritchisong/301notes2.htm
  12. http://serendip.brynmawr.edu/bb/kinser/Structure1.html

Inflammaging and aging process

Inflamación, mediada por leucocitos, como parte de la respuesta del tejido vascularizado ante la lesión. Tomado de http://library.med.utah.edu/WebPath/INFLHTML/INFL070.html

Recently, the term “inflammaging” was coined by Franceschi and colleagues to characterize a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses. Inflammaging differs significantly from the traditional five cardinal features of acute inflammation in that it is characterized by a relative decline in adaptive immunity and T-helper 2 responses and is associated with increased innate immunity by cells of the mononuclear phagocyte lineage (J Neuroinflammation. 2008 Nov 11;5:51)

Recientemente, el término “inflammaging” fue acuñado por Franceschi y colegas para caracterizar un paradigma ampliamente aceptado de que el envejecimiento se acompaña de una inflamación crónica de bajo grado con suprarregulación de ciertas respuestas pro-inflamatorias. Inflammaging difiere significativamente de las tradicionales cinco características cardinales de la inflamación aguda, en que hay una disminución relativa de la inmunidad adaptativa y de las respuestas de linfocitos del tipo T-helper 2 y se asocia con un aumento de la inmunidad innata de las células del linaje fagocítico mononuclear.

The association between the increase in life expectancy in humans and age related changes in the immune system promotes that individuals are exposed longer to endogenous and environment antigens which allows an activation of the innate immune system and the subsequent establishment of a low grade chronic inflammation state with an increased expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin 6, etc.). This inflammatory state referred as inflammaging.

Con el aumento en la expectativa de vida del ser humano, los individuos se encuentran expuestos por más tiempo a distintos antígenos que, junto con el envejecimiento del sistema inmunológico, favorecen el establecimiento de un estado inflamatorio crónico de bajo grado con aumento en la expresión de citocinas proinflamatorias (factor de necrosis tumoral alfa, interleucina 6, etc.). Este estado denominado inflammaging se caracteriza por un envejecimiento de origen inflamatorio.

Exercise is so far one of the possible useful interventions to avoid the effects of inflammation in the origin of diseases associated with aging. Exercise promotes a state of regulated stress. This increases the serum levels of IL-6 which leads to increased consumption of fat by promoting lipolysis to efficiently produce energy during physical activity.
Furthermore, increases in IL-6 are associated with a compensating reaction characterized by the production of IL-10 and other cytokines which exerts receptor antagonistic IL-1 activity, which induces a balance in the balance of inflammation functions.

Dietary supplementation of antioxidants, B vitamins, polyphenols, and polyunsaturated fatty acids are beneficial to AD, and consumptions of fish, fruits, vegetables, coffee, and light-to-moderate alcohol reduce the risk of AD (BioMed Research International. 2013;2013:524820)
El ejercicio físico es hasta el momento una de las posibles intervenciones útiles para evitar los efectos de la inflamación en el origen de enfermedades asociadas al envejecimiento. El ejercicio promueve un estado de estrés regulado. Éste incrementa los niveles séricos de IL-6 lo cual conduce a un mayor consumo de tejido adiposo al favorecer la lipólisis para producir de forma eficiente energía durante la actividad física.
running womn si
Además, los incrementos en la IL-6 se relacionan con una reacción compensadora caracterizada por la producción de IL-10 y otras citocinas con funciones antagónicas al receptor de la IL-1 por lo que induce un equilibrio en la balanza de la inflamación.

Las asociaciones entre el riesgo para la Enfermedad de Alzheimer (AD) y la ingesta de ácido ascórbico (AA)  se han investigado en varios grandes estudios de población, tanto en los EE.UU. y también en una muestra grande de Europa. Uno de los primeros estudios parecía muy prometedor cuando los datos se informaron de la Healthy Aging Chicago Proyecto (CHAP) que muestra que ninguno de los> 65 años, los participantes 633 sin demencia que complementarse con AA, desarrollado AD en el período de seguimiento (promedio de 4 años ). Un patrón más complejo de los efectos se informó en el Estudio de Envejecimiento de Honolulú – Asia que comprendía hombres de 71 años a 93 años. En los individuos cognoscitivamente intactos, la ingesta de AA se asoció con una mayor probabilidad para la función cognitiva mejorada. La alta ingesta de AA y la vitamina E se asociaron con una menor probabilidad de demencia vascular.(Nutrients. 2014 Apr 24;6(4):1752-81.)

Los suplementos dietéticos de antioxidantes , vitaminas B , polifenoles y ácidos grasos poliinsaturados son beneficiosos para la Enfermedad de Alzheimer y consumos de pescado, frutas, verduras , café, y ligero a moderado de alcohol reduce el riesgo de Enf. de Alzheimer (BioMed Research International. 2013;2013:524820)

tABLA 2 nnt
Reference of the table: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931824/

Alim y efect Neuroquim
Referencia de esta tabla:
Ramesh BN et al. Neuronutrition and Alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1123-39.

tumblr_m5f5m4gLz11ry6151o3_500 tumblr_m5f5m4gLz11ry6151o1_400 tumblr_m5f5m4gLz11ry6151o2_500

Neuronutrition presentation 
Conferencia sobre Neuronutrición en
Slide presentation on Neuronutrition in web page:
Presentación en diapositivas sobre Neuronutrición en página web de Academia.edu https://www.academia.edu/6123786/Neuronutrici%C3%B3n_y_Educaci%C3%B3n

Complementary references
Referencias complementarias

Neuroinflammaging as a precursor of Alzheimer disease
Neuroinflamación como precursora de Enfermedad de Alzheimer
Giunta B, Fernandez F, Nikolic WV, Obregon D, Rrapo E, Town T, Tan J. Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation. 2008 Nov 11;5:51.

Elderly process, inflammatory in nature.
El envejecimiento, de origen inflamatorio

Cytokines and aging process.
Citoquinas y envejecimento
Brüünsgaard H, Pedersen BK. Age related inflammatory cytokines and disease. Immunol Allergy Clin N Am 2003; 23: 15 39.

Hipervínculos en Scoop.it sobre inflammaging


Understanding how we age
Comprendiendo como envejecemos
Dehydroepiandrosterone (DHEA) and its sulphated precursor, DHEA sulphate (DHEAS), have opposing actions to cortisol and may protect individuals from the negative effects of inflammaging.  

La dehidroepiandrosterona (DHEA) y su precursor sulfatado, DHEA sulfato (DHEAS), tienen acciones opuestas a cortisol y pueden proteger a las personas contra los efectos negativos de “inflammaging.”
Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Healthspan. 2013 May 2;2(1):8. doi: 10.1186/2046-2395-2-8.

Ascorbic acid and effects in cognition
Efectos en cognición de ácido ascórbico (vitamina C)
A more complex pattern of effects was reported in the Honolulu Asia Aging Study which comprised men aged 71 to 93 years. In cognitively intact individuals, AA intake was associated with a higher likelihood for enhanced cognitive function. High AA and vitamin E intake were associated with lower likelihood for vascular dementia.

Un patrón más complejo de los efectos se informó en el Estudio de Envejecimiento Honolulú Asia que comprendía hombres de 71 años a 93 años. En los individuos cognitivamente intactos, la ingesta de AA se asoció con una mayor probabilidad para la función cognitiva mejorada. La alta ingesta de AA y la vitamina E se asociaron con una menor probabilidad de demencia vascular
Harrison FE, Bowman GL, Polidori MC. Ascorbic acid and the brain: rationale for the use against cognitive decline. Nutrients. 2014 Apr 24;6(4):1752-81. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011065/pdf/nutrients-06-01752.pdf

The level of AA that is sufficient to maintain cognitive function and favorably modify brain aging is unknown. However, its strong free radical scavenging properties, well-characterized transport mechanisms, and sheer CNS content provide a strong basis for exploring a role for promoting optimum brain function (…). A synopsis of the literature provides some fabric of notable consistency: 1) Plasma AA is apparently lower in AD compared with controls and does not appear to be explained by age, gender, BMI, or diet, 2) CSF AA may be moderately lower and the CSF-to-plasma AA ratio higher in AD, but only the CSF-to-plasma AA ratio appears to predict cognitive decline over 1 year in mild-to-moderate AD. BBB impairment may cripple that brains ability to retain a high CSF-to-plasma AA ratio regardless of the robust “carrier” mechanisms in place for AA. Together, these findings suggest an AA “sink” hypothesis in AD—where the brain draws upon the peripheral pools of AA at all cost to shore the antioxidant capacity of the CNS to battle the oxidative stress seen in AD. Factors that affect the brains’ ability to achieve this innate demand for AA may be important considerations for future research (e.g., intake, carrier, and barrier mechanisms).

El nivel de AA que es suficiente para mantener la función cognitiva y modificar favorablemente el envejecimiento del cerebro es desconocida. Sin embargo, sus fuertes propiedades de eliminación de radicales libres, bien caracterizados mecanismos de transporte, y la pura contenido CNS proporcionan una base sólida para explorar el papel de promoción de la función óptima del cerebro (…) Un resumen de la literatura ofrece información consistencia notable: 1) La presencia en Plasma de AA es aparentemente menor en EA en comparación con los controles y no parece explicarse por la edad, sexo, índice de masa corporal, o la dieta, 2) El AA en el líquido cefalorraquídeo (CSF) puede ser moderadamente inferior y la relación de CSF-plasma AA más alto, pero únicamente la relación de AA de CSF/plasma parece predecir el deterioro cognitivo anual en la EA de intensidad leve a moderada. El deterioro de la barrera hemato-encefálica puede afectar en los cerebros la capacidad de retener una alta relación de AA-CSF-plasma, independientemente de los robustos mecanismos “portadores” disponibles para el AA. En conjunto, estos hallazgos sugieren la llamada hipótesis “de sumidero” para el ácido ascórbico en la enfermedad de Alzheimer, donde el cerebro extrae las reservas periféricas de todo el ácido ascórbico a toda costa, para apuntalar la capacidad antioxidante del sistema nervioso central para luchar contra el estrés oxidativo visto en la EA. Los factores que afectan la capacidad de los cerebros para lograr esta demanda innata de AA puede ser consideraciones importantes para la investigación futura (por ejemplo, mecanismos, admisión, portadores, y de barrera.

Bowman GL. Ascorbic acid, cognitive function, and Alzheimer’s disease: a current review and future direction. Biofactors. 2012 Mar-Apr;38(2):114-22.
Kara Y, Doguc DK, Kulac E, Gultekin F. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?Environ Toxicol Pharmacol. 2014 May;37(3):916-27.

Hu N, Yu J-T, Tan L, Wang Y-L, Sun L, Tan L. Nutrition and the Risk of Alzheimer’s Disease. BioMed Research International. 2013;2013:524820. doi:10.1155/2013/524820.

Neuroinflammation and aging
Neuroinflamación y envejecimiento
Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A. Neuroinflammation and ageing: current theories and an overview of the data. Rev Recent Clin Trials. 2011 Sep;6(3):189-203.

Free radicals and aging
El rol de los radicales libres en el estrés celular del envejecimiento
Experimental evidence suggests that the ageing organism is in a state of oxidative stress, which supports the free radical theory. A number of other theories have been proposed ; some of these are actually compatible with the free radical theory.

La evidencia experimental sugiere que el organismo de envejecimiento está en un estado de estrés oxidativo, lo que apoya la teoría de los radicales libres. Se han propuesto un número de otras teorías; algunos de ellos son realmente compatibles con la teoría de los radicales libres.
Barouki R. [Ageing free radicals and cellular stress]. Med Sci (Paris). 2006 Mar;22(3):266-72.

Compilation of material cured about mind and consciousness

The experiences of the autoconscious mind are related to neural activity in the association areas of the brain, with a relative grade of correspondence but not identity. The unity of the conscious experience is based upon the autoconscious mind but not from the complexity of the neuronal wiring/ conexions in the association areas in the cortex. The hypothesis of Karl Popper of the Three Worlds permits to comprehend the reality and the autoconscious mind, trying to solve the perennial quest between body and mind.







Forever young and mediation: to mindset at the outset.



It is well known the decaying of the gray matter with age. A growing body of research suggests that meditation practices are associated with substantial psychological as well as physiological benefits. In searching for the biological mechanisms underlying the beneficial impact of meditation, studies have revealed practice-induced alterations of neurotransmitters, brain activity, and cognitive abilities (1).
When correlating global and local gray matter with age, it is detected negative correlations within both controls and meditators, suggesting a decline over time. However, the slopes of the regression lines were steeper and the correlation coefficients were stronger in controls than in meditators.
This particular quality of non-evaluative awareness can improve one’s physical and psychological health status, and therefore several approaches generally called “mindfulness-based interventions” (MBIs) have been developed and tested in the last 40 years (9), although only over the last three decades the mindfulness meditation practices have been increasingly incorporated into psychotherapeutic programs, to take advantage of these benefits . Evidence about their efficacy and effectiveness in improving mindfulness and health is rapidly accumulating.

The role of meditation

The anatomy of the hippocampus has been repeatedly reported to differ between meditators and non-meditators. The human hippocampus shows structural differences between meditators and non-meditators as well as between men and women.
With the exact underlying neuronal mechanisms remaining to be established, studies linking meditation and brain structure are relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners (2).
Surprisingly, there are scanty published studies that have addressed the question of whether meditation diminishes age-related brain degeneration (4).
It has been suggested that this process is associated with a perceptual shift (12), in which one’s thoughts and feelings are recognized as events occurring in the broader field of awareness.

An underlying mechanism

Nothwithstanding, experiments using positron emission tomography or functional MRI (fMRI) within samples of novice or expert meditators indicated increased brain activation (compared to baseline) during meditation or mindfulness exercises in left and right hippocampal and parahippocampal regions (5)
When deeming the neural basis of the complex mental task of meditation, there are a lot of involved changes in cognition, sensory perception, affect, hormones, and autonomic activity (6)
Neuroimaging studies have begun to explore the neural mechanisms underlying mindfulness meditation practice with techniques such as EEG and functional MRI (12).

The hyppocampus: taken from https://camphippo.wordpress.com/2013/07/14/what-is-the-hippocampus-part-i-episodic-memory-and-index-theory/

Group differences in the hippocampus and the right anterior insula, however, have each been identified in at least two of the studies. Furthermore, activation in both regions has been reported during meditative states, namely the hippocampus and the insula. The hippocampus is known to be critically involved in learning and memory processes, the modulation of emotional control, while the insula has been postulated to play a key role in the process of awareness, functions which have been shown to be important in the process and outcomes of mindfulness training (12).
Cross-sectional studies have established that differences in regional gray matter are associated with performance abilities (13, 14), suggesting that an increase in gray matter corresponds to improved functioning in the relevant area.

The insula. Taken from https://donnaburge.wordpress.com/attraction/

What the evidence show

In the first study conducted by Eileen Luders et al, within a relatively large sample of meditators and well-matched controls, where global measures (hippocampal volumes) were complemented with refined local measures (radial hippocampal distances from surface to central core). After manually have labeled the hippocampus with a described procedure, the global left and right hippocampal volumes were established in mm3. Altogether, evaluated hyppocampal sizes were larger in meditators compared to controls, with up to 15% difference. ! These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head (3).
Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation (2).
In another exploratory single-group pilot longitudinal study it was examined the local gray matter changes over a six-week period of Mindfulness-based interventions (MBIs). The participants included six older adult community volunteers (M=66.5 years of age, SD=5.5, range=58-75; 66% female) with sleep disturbances. The Mindfulness-based interventions was delivered as a weekly, two-hour, six-session, group-based course in mindfulness meditation. Gray matter was measured voxel-wise pre- and post-intervention. It was found a significant gray matter increase identified within the precuneus, (posterior region of the medial parietal cortex, known to belong to the associative cortices, which is the widely distributed network sharing connections with other cortical and subcortical regions allowing the brain to integrate both external and self-generated information and to produce much of the mental activity that characterizes Homo sapiens sapiens) (10), possibly implicating meditation-induced changes of the default mode network. In contrast, observed significant gray matter decreases may have been driven by MBI-related remediation of brain architecture subserving sleep complaints (7).

right anterior insula and precuneus
(Left) right anterior insula and (Right) precuneus of brain. Taken from http://www.visembryo.com/story202.html

Toward a mindfulness

The so called dispositional mindfulness (DM), is the tendency to be more mindful in daily life seems to be a sum of individual genetics and life experiences, and DM is not necessarily related to having participated in an mindfulness based intervention or practicing meditative exercises. DM can be measured by scales addressing mindfulness trait, e.g., the Mindful Attention Awareness Scale (MAAS) and the Five Facets Mindfulness Questionnaire (FFMQ) and it has been significantly related to several indicators of psychological and physical health including: higher levels of positive affect, improvement in personal stress management skills, and in adaptive emotional regulation (16).
The mindfulness may encourage self-regulation, may enhance values clarification, as well as cognitive, emotional and behavioral flexibility and tolerance for facing difficult emotional states. Increasing the objectivity through which internal experience is viewed is intended to change one’s relationship to the thoughts, as opposed to changing the thoughts themselves. For instance, the tendency to be more mindful in daily life has been associated with better psychological functioning and reduced overall distress in cancer patients. Being aware of the present moment and refraining from judging inner experience were the 2 most important mindfulness skills for improvements of psychological functioning among cancer patients (17).


The mindfulness based intervention

The psychological construct of mindfulness refers to an awareness that emerges by intentionally paying attention to the present experience in a non-judgmental way, as was described by Kabat-Zinn (15). In other words, a “mindful” mind brings together attentional and attitudinal features at the same time, self-regulating the attention toward present-moment, direct experiences and attitude in a non-judgmental tone toward internal and external phenomena (physical, affective and behavioral). Interest in mindfulness has increased exponentially in recent decades in academic and clinical contexts.
When approaching this mindfulness based intervention, a definition describes it as “paying attention in a particular way: on purpose, in the present moment, and non-judgmentally.” It has described mindfulness as a “way of being,” choosing to think of the work as a dynamic process, embedded within all of life, both intra- and inter-personal, rather than a static technique, practiced only “on the cushion” and thereby compartmentalized to “x” minutes per day (8)
This particular quality of awareness has been associated to several indicators of physical and psychological health, and can be developed using mindfulness-based interventions (MBIs), and therefore MBIs have been successfully applied as preventive and complementary interventions and therapies in medicine and psychology. Together with quiet sitting and lying meditation practices, mindful physical exercises such as “mindful walking” and “mindful movement” are key elements in MBIs and couple muscular activity with an internally directed focus, improving interoceptive attention to bodily sensations. In addition, MBIs seem to share similar mechanisms with physical fitness (PF) by which they may influence cardiovascular responses to stress (9).



A growing body of literature has demonstrated that neural systems are modifiable networks and changes in the neural structure can occur in adults as a result of training. These findings not only imply a close link between meditation and brain structure, but also suggest possible modulating effects of meditation on age-related brain atrophy. Given that normal aging is associated with significant loss of brain tissue, meditation-induced growth and/or preservation might manifest as a seemingly reducing brain age in meditators (i.e., cerebral measures characteristic of younger brains).
These results add to a growing literature depicts the impact of mindfulness and its relationship to improved psychological health. Moreover, specific mindfulness skills may be important in supporting these improvements, mainly taking into account the rising incidence and prevalence of brain atrophy conditions.


  1. Luders E, Cherbuin N, Kurth F. Forever Young(er): potential age-defying effects of long-term meditation on gray matter atrophy. Front Psychol. 2015 Jan 21;5:1551. doi: 10.3389/fpsyg.2014.01551. eCollection 2014.
  2. Luders E, Thompson PM, Kurth F. Larger hippocampal dimensions in meditation
    practitioners: differential effects in women and men. Front Psychol. 2015 Mar
    6;6:186. doi: 10.3389/fpsyg.2015.00186. eCollection 2015.
  3. Luders E, Thompson PM, Kurth F, Hong JY, Phillips OR, Wang Y, Gutman BA, Chou YY, Narr KL, Toga AW. Global and regional alterations of hippocampal anatomy in long-term meditation practitioners. Hum Brain Mapp. 2013 Dec;34(12):3369-75. doi: 10.1002/hbm.22153. Epub 2012 Jul 19.
  4. Luders E. Exploring age-related brain degeneration in meditation practitioners. Ann N Y Acad Sci. 2014 Jan;1307:82-8. doi: 10.1111/nyas.12217. Epub 2013 Aug 7.
  5. Engström M, Pihlsgård J, Lundberg P, Söderfeldt B. Functional magnetic resonance imaging of hippocampal activation during silent mantra meditation. J Altern Complement Med. 2010 Dec;16(12):1253-8. doi: 10.1089/acm.2009.0706.
  6. Newberg AB, Iversen J. The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Med Hypotheses. 2003 Aug;61(2):282-91.
  7. Kurth F, Luders E, Wu B, Black DS. Brain Gray Matter Changes Associated with Mindfulness Meditation in Older Adults: An Exploratory Pilot Study using Voxel-based Morphometry. Neuro. 2014;1(1):23-26.
  8. Cullen C: Mindfulness-Based Interventions: An Emerging PhenomenonMindfulness 2011; DOI 10.1007/s12671-011-0058-1
  9. Demarzo MMP, Montero-Marin J, Stein PK, Cebolla A, Provinciale JG, García-Campayo J. Mindfulness may both moderate and mediate the effect of physical fitness on cardiovascular responses to stress: a speculative hypothesisFrontiers in Physiology. 2014;5:105. doi:10.3389/fphys.2014.00105.
  10. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006 Mar;129(Pt 3):564-83.
  11. Hölzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, Lazar SW. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011 Jan 30;191(1):36-43. doi: 10.1016/j.pscychresns.2010.08.006.
  12. Carmody J. Invited Commentary: Evolving Conceptions of Mindfulness in Clinical Settings. Journal of Cognitive Psychotherapy. 2009;23:270–280
  13. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry. 2007;62:446–454.
  14. Mechelli A, Crinion JT, Noppeney U, O’Doherty J, Ashburner J, Frackowiak RS, Price CJ. Structural plasticity in the bilingual brain. Proficiency in a second language and age at acquisition affect grey-matter density. Nature. 2004;431:757
  15. Kabat-Zinn J. (2003). Mindfulness-based stress reduction (MBSR).Constr. Hum. Sci. 8, 73–107
  16. Garland S. N., Campbell T., Samuels C., Carlson L. E. (2013). Dispositional mindfulness, insomnia, sleep quality and dysfunctional sleep beliefs in post-treatment cancer patients. Pers. Indiv. Differ. 55, 306–311 10.1016/j.paid.2013.03.003
  17. Garland, S. N., Tamagawa, R., Todd, S. C., Speca, M., & Carlson, L. E. Increased mindfulness is related to improved stress and mood following participation in a mindfulness-based stress reduction program in individuals with cancer. Integrative Cancer Therapies, 2013; 12(1), 31–40.

Facebook page of the Book: Brain, mind consciousness – A multidisciplinary approach



Autoconscious mind and consciousness


The whole article in:



The experiences of the autoconscious mind are related to neural activity in the association areas of the brain, with a relative grade of correspondence but not identity. The unity of the conscious experience is based upon the autoconscious mind but not from the complexity of the neuronal wiring/ conexions in the association areas in the cortex. The hypothesis of Karl Popper of the Three Worlds permits to comprehend the reality and the autoconscious mind, trying to solve the perennial quest between body and mind. The concept of cortical modules (paramount for the interactionism or interactionistic dualism) allows the interaction between the autoconscious mind and the brain cortex at the level of cortical modules, which permits to the autoconscious mind to scrutiny continuosly the conformation of the cortical modules, thus allowing a reciprocity between the modules and the autoconscious mind. The autoconscious mind implies the presence of attention as an integrating agent in the raising of conscious experience.

Key words: Autoconscious mind – Three worlds – cortical module – qualia – perennial question